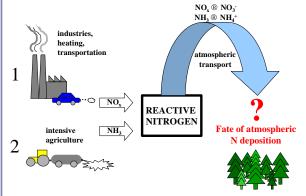

)

Influence of nitrogen deposition to mountain forests: N-addition with ¹⁵N labelling in a paired-catchment experiment


Swiss Federal Institute WSL, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
Mountain Forest Ecology, Swiss Fed. Inst. of Technology, ETH-Zentrum, CH-8092 Zürich, Switzerland
Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland

FED

Introduction

In the last decades, human activities strongly altered the global nitrogen cycle.

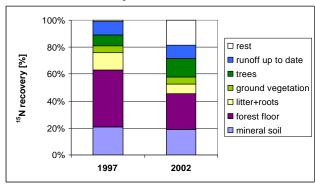
Two main types of anthropogenic activities release reactive nitrogen to the atmosphere:

The increasing input of reactive nitrogen particularly affects mountain ecosystems. It can induce eutrophication of previously N-limited systems and finally cause nitrogen saturation.

To assess these effects, flow and fate of inorganic nitrogen are followed by a ¹⁵N tracer in a paired-catchments experiment with N-addition.

Research site

Alptal:

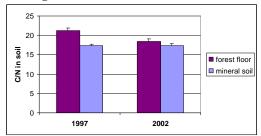

- Prealps of Central Switzerland
- Picea abies forest, 1200 m a.s.l.
- cool and wet climate (6°C, 2300 mm/year)
- bulk deposition of NO₃⁻ + NH₄⁺ of 12 kg ha⁻¹ year⁻¹
- umbric Gleysol with raw or muck humus over Flysch
- low permeability, water table close to surface and preferential water flow paths

Materials and methods

- N-addition experiment simulates a deposition increase of 27 kg N ha⁻¹ year⁻¹
- N-addition as NH₄NO₃ in rain water applied by sprinklers to a paired-catchment, (addition and control, 1500 m²)
- N-addition from 1995 2003
 - 1994-1995 calibration year
 - 1995-1996 ¹⁵NH₄ ¹⁵NO₃ tracer application
 - 1997 and 2002 N-pool sampling
 - sampled pools: trees, ground vegetation, litter, soil, soil microbial biomass, roots and water runoff

Results

¹⁵N-tracer recovery


1997:

- the largest sink for ¹⁵N is the soil, mainly the forest floor
- 10 % of the added ^{15}N goes directly as NO_3^- into runoff

2002:

- the largest sink is still the soil, ¹⁵N in forest floor decreases due to mineralization and tree uptake
- 15N in litter and roots decreases as well
- a rest amount was no longer recovered

Change of C/N ratio

1997:

- the forest floor has a higher C/N ratio **2002:**
- the C/N ratio of the forest floor decreases over time, due to the continuous N-addition and it's strong N retention (already observed with ¹⁵N)

Conclusion

- 15N tracer is a good tool to show the fate of N
- a large ¹⁵N sink is the soil, 10% leaves the system directly by preferential flow. A part of the stored ¹⁵N in the soil is still available for tree uptake
- a higher N deposition alters the C/N ratio in the soil and has an influence on other pools
- the whole nitrogen cycle is very slow and effects can only be seen after several years