Greenhouse gas exchanges of the soil in a mountain forest subjected to N addition and after girdling Norway spruce trees

Kim Krause^{1,2}, Pascal A. Niklaus³, Patrick Schleppi¹

- Swiss Fed. Inst. for Forest Snow and Landscape Research (WSL), CH-8903 Birmensdorf, Switzerland Forest Ecology, Swiss Fed. Inst. of Technology (ETH), CH-8092 Zurich, Switzerland Jinst. of Fouldinoany Biology and Environmental Studies, University of Zürich, CH-8006 Zürich, Switzerland

Research questions

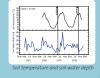
- Does increased nitrogen deposition alters greenhouse gas fluxes (CO., N.O, CH.) from a forest soil?
- How do greenhouse gas fluxes respond to a bark beetle infestation (tree girdling experiment)?
- (3) How does the felling of bark beetle infested trees alters greenhouse gas fluxes?

Material & methods

Experimental site Alptal

- · located in the foothills of the Alps at 1200 m a.s.l
- subalpine Norway spruce forest (Picea abies)
- precipitation 2300 mm a-1 (30% as snow)
- · mean air temperature: 6°C
- bulk N deposition: 12 kg ha-1a-1 (half NH, -, half NO, -)

Long-term low-dose N addition

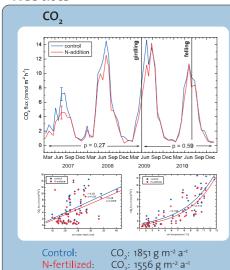

- since April 1995 N addition with sprinklers during rain events as NH₄NO,
- two plots (each 1500 m²):
 - 1) control: rainwater only (12 kg N ha⁻¹a⁻¹) 2) N-fertilized: addition (+25 kg N ha-1a-1)

Soil properties

- · soil/parent rock: Gelysol/Flysch
- · different humus types depending on microtopography:
- ⇒ mounds : mor (raw humus)
- ⇒ depressions: anmoor humus
- low permeability due to high clay (~47%) and silt (~48%) content
- the water table is usually close to the surface
- anoxic conditions in depressions: mean redox potential = $259 \pm 15 \text{ mV}$

Greenhouse gas flux measurements

- CO₂, N₂O and CH₄ measured using the static chamber
- 12 plots in a replicated plot design (6 x 2 N levels)
- gas samples taken by a syringe, o, 30, 60 minutes after closure
- sampling intervals of approx. 3 weeks
- samples analyzed by gas chromatography



Tree girdling as a best possible bark beetle simulation

- climate warming will increase bark beetle damage
- tree girdling: removing a 30 cm strip of bark and phloem around the trunk
- half of the trees (15) per plot were girdled
- after 14 month, trees had to be felled due to a real bark beetle infestation

Results

N₂O N₂O: 0.11 mmol m⁻² a⁻¹ N.O: 0.5 mmol m-2 a-1

CH, CH₄: -1,2 mmol m⁻² a⁻¹ N-fertilized: CH₄: 10 mmol m⁻² a⁻¹

Conclusions

- only N₃O fluxes changed significantly due to N-addition
- over 99% of the carbon dioxide equivalency emissions from the soil are in form of CO₃ itself
- after tree girdling, the significant N-fertilization effect on N₂O fluxes dissapeared
- results from the felling of the trees as a management option after bark beetle infestation are expected in the current vegetation season

