Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO₂ concentration (canopy FACE) Patrick Schleppi, Inga Bucher-Wallin, Frank Hagedorn (WSL*), Christian Körner (Uni Basel) * Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf, Switzerland #### **Hypotheses** - litterfall ↑ - C/N ratio ↑ - N demand for decomposition ↑ - C root exudation ↑ - N demand for microbial activity ↑ #### PROGRESSIVE N LIMITATION IN FORESTS: REVIEW AND IMPLICATIONS FOR LONG-TERM RESPONSES TO ELEVATED CO₂ ? Dale W. Johnson¹ Soil Biology & Biochemistry 41 (2009) 54-60 Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO₂ J. Adam Langley ^a, Duncan C. McKinley ^a, Amelia A. Wolf ^b, Bruce A. Hungate ^c, Bert G. Drake ^a, J. Patrick Megonigal ^{a,*} Ecology Letters, (2011) 14: 187-194 Richard P. Phillips, 1* Adrien C. Finzi² and Emily S. Bernhardt³ Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO₂ fumigation #### Hofstetten Altitude: 540 m Geology: Jura limestone Vegetation: mixed forest, 80-120 year old Precipitation: 1000 mm/a Bulk N deposition: $\approx 20 \text{ kg/ha/a}$ Hofstetten (SO): Swiss Canopy Crane University of Basel #### Transects for soil solution sampling (suction cups and resin bags) #### **Trees** - 360 μl/l CO₂ - 560 μl/l CO₂ - Acer campestre - Fagus sylvatica - Quercus sp. - Picea abies - Pinus sylvestris - Carpinus betulus - - Prunus avium - Larix decidua - Tilia platyphyllos - Abies alba #### Statistical approach - Response variables: soil solution chemistry - Experimental factor: CO₂ ambient vs. elevated - Problem: unknown gradient along transect - Indicator: δ¹³C of inorganic C in soil solution - ❖ Statistics: dose → response relationship - Graphs: ambient vs. intermediate vs. elevated #### Relative CO₂ effect (based on ¹³C) in soil CO₂ (Steinmann *et al.*, Oecologia, 2004) in soil DIC Dose \rightarrow response relationship along transect (x): principle Example only, no real data (graph drawn 9 Mai 2001) Nitrate in soil solution: all data Nitrate in soil solution: grouped by CO₂ effect (based on DI¹³C) #### Nitrate in soil solution (distance-weighted least squares) CO₂ treatment effect on nitrate in soil solution ### CO₂ treatment effect on DON in soil solution #### Nitrate in ion-exchange resin bags #### Nitrate in resin bags (distance-weighted least squares) ¹⁵N in nitrate in resin bags (distance-weighted least squares) ¹⁵N in *Fagus sylvatica* seedlings Global Change Biology (2012) 18, 757-768, doi: 10.1111/j.1365-2486.2011.02559.x ## Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO₂ concentration (canopy FACE) PATRICK SCHLEPPI*, INGA BUCHER-WALLIN*, FRANK HAGEDORN* and CHRISTIAN KÖRNER† *Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstr. 111, CH-8903, Birmensdorf, Switzerland, †Institute of Botany, University of Basel, Schönbeinstr. 6, CH-4056, Basel, Switzerland #### **Conclusions** - large variability of soil solution - ❖ CO₂ => more nitrate in the soil (no PNL) - ... but less DON - more ¹⁵N in soil nitrate and in plants - likely explanation: more mineralisation + nitrification - either priming effect due to root exudations - ❖ and/or because soil moisture increases due to CO₂