Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO₂ concentration (canopy FACE)

Patrick Schleppi, Inga Bucher-Wallin, Frank Hagedorn (WSL*), Christian Körner (Uni Basel)

* Swiss Federal Institute for Forest, Snow and Landscape Research, CH-8903 Birmensdorf, Switzerland

Hypotheses

- litterfall ↑
- C/N ratio ↑
- N demand for decomposition ↑

- C root exudation ↑
- N demand for microbial activity ↑

PROGRESSIVE N LIMITATION IN FORESTS: REVIEW AND IMPLICATIONS FOR LONG-TERM RESPONSES TO ELEVATED CO₂

?

Dale W. Johnson¹

Soil Biology & Biochemistry 41 (2009) 54-60

Priming depletes soil carbon and releases nitrogen in a scrub-oak ecosystem exposed to elevated CO₂

J. Adam Langley ^a, Duncan C. McKinley ^a, Amelia A. Wolf ^b, Bruce A. Hungate ^c, Bert G. Drake ^a, J. Patrick Megonigal ^{a,*}

Ecology Letters, (2011) 14: 187-194

Richard P. Phillips, 1* Adrien C. Finzi² and Emily S. Bernhardt³ Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO₂ fumigation

Hofstetten

Altitude: 540 m

Geology: Jura limestone

Vegetation: mixed forest, 80-120 year old

Precipitation: 1000 mm/a

Bulk N deposition: $\approx 20 \text{ kg/ha/a}$

Hofstetten (SO): Swiss Canopy Crane

University of Basel

Transects for soil solution sampling

(suction cups and resin bags)

Trees

- 360 μl/l CO₂
- 560 μl/l CO₂
- Acer campestre
- Fagus sylvatica
- Quercus sp.
- Picea abies
- Pinus sylvestris
- Carpinus betulus -
- Prunus avium
- Larix decidua
- Tilia platyphyllos
- Abies alba

Statistical approach

- Response variables: soil solution chemistry
- Experimental factor: CO₂ ambient vs. elevated
- Problem: unknown gradient along transect
- Indicator: δ¹³C of inorganic C in soil solution
- ❖ Statistics: dose → response relationship
- Graphs: ambient vs. intermediate vs. elevated

Relative CO₂ effect (based on ¹³C)

in soil CO₂ (Steinmann *et al.*, Oecologia, 2004)

in soil DIC

Dose \rightarrow response relationship along transect (x): principle

Example only, no real data (graph drawn 9 Mai 2001)

Nitrate in soil solution: all data

Nitrate in soil solution: grouped by CO₂ effect (based on DI¹³C)

Nitrate in soil solution (distance-weighted least squares)

CO₂ treatment effect on nitrate in soil solution

CO₂ treatment effect on DON in soil solution

Nitrate in ion-exchange resin bags

Nitrate in resin bags (distance-weighted least squares)

¹⁵N in nitrate in resin bags (distance-weighted least squares)

¹⁵N in *Fagus sylvatica* seedlings

Global Change Biology (2012) 18, 757-768, doi: 10.1111/j.1365-2486.2011.02559.x

Increased nitrate availability in the soil of a mixed mature temperate forest subjected to elevated CO₂ concentration (canopy FACE)

PATRICK SCHLEPPI*, INGA BUCHER-WALLIN*, FRANK HAGEDORN* and CHRISTIAN KÖRNER†

*Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstr. 111, CH-8903, Birmensdorf, Switzerland, †Institute of Botany, University of Basel, Schönbeinstr. 6, CH-4056, Basel, Switzerland

Conclusions

- large variability of soil solution
- ❖ CO₂ => more nitrate in the soil (no PNL)
- ... but less DON
- more ¹⁵N in soil nitrate and in plants
- likely explanation: more mineralisation + nitrification
- either priming effect due to root exudations
- ❖ and/or because soil moisture increases due to CO₂

